

IEC SRD 62913-2-3

Edition 1.0 2019-05

SYSTEMS REFERENCE DELIVERABLE

Generic smart grid requirements –
Part 2-3: Resources connected to the grid domains

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.020; 29.240; 33.200

ISBN 978-2-8322-6882-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

Г	JREWORD		
IN	ITRODUCT	ION	8
1	Scope		
2	•	ve references	
3		definitions and abbreviated terms	
J			
		rms and definitions	
4		breviated termsed energy resources	
4			
		rpose and scope	
	4.1.1	Purpose: business analysis of DERs	
	4.1.2	Scope: DERs as sources of generation	
		siness analysis of DER systems	
	4.2.1	Benefits and challenges of grid-connected DER systems	
	4.2.2	Stakeholders involved in the DER domain	
	4.2.3	Traffic light concept for DERs	
	4.2.4	Business drivers and objectives of DER stakeholders	
	4.2.5	DER grid services	
	4.2.6	Regional differences	
	4.2.7	List of business roles and business Use Cases of the domain	
	4.2.8	List of system Use Cases and system roles	
5		ome/commercial/industrial/DR-customer energy management	
	5.1 Pu	rpose and scope	
	5.1.1	Clause objective	
	5.1.2	General context	
	5.2 Bu	siness analysis	42
	5.2.1	General overview	42
	5.2.2	List of business roles and business Use Cases of the domain	
	5.2.3	List of system Use Cases and system roles	
	5.3 Sn	nart home requirements for the smart grid	
	5.3.1	Smart grid requirements extracted from smart home Use Cases	55
	5.3.2	Other requirements	72
6	Energy	storage	72
	6.1 Pu	rpose and scope	72
	6.1.1	Clause objective	72
	6.1.2	General context	72
	6.2 Bu	siness analysis	74
	6.2.1	General overview	74
	6.2.2	EES grid services	74
	6.2.3	List of business Use Cases and business roles of the domain	78
	6.2.4	List of system Use Cases and system roles	80
	6.3 EE	S smart grid requirements	82
	6.3.1	Smart grid requirements extracted from EES Use Cases	82
	6.3.2	Other requirements	82
Αı	nnex A (info	ormative) Links with other TCs and gathered materials	84
	A.1 Dis	stributed energy resources	84
	A.1.1	Identified TCs	84

A.1.2	Gathered materials	84
A.1.3	Description of the five-level hierarchical diagram	85
A.2 Sm	art home/commercial/industrial/DR-customer energy management	87
A.2.1	Identified TCs	
A.2.2	Gathered materials	87
A.2.3	Liaisons from other TCs contributing to the smart grid requirements of the domain	96
A.3 En	ergy storage	97
A.3.1	Identified TCs	
A.3.2	Gathered materials	97
A.3.3	Liaisons from other TCs contributing to the smart grid requirements of the domain	100
Annex B (info	rmative) Use Cases	101
	tributed energy resources	
	art home/commercial/industrial/DR-customer energy management	
B.2.1	Business Use Cases	
B.2.2		
B.3 En B.3.1	ergy storageBusiness Use Cases	
	business use cases	
Dibliography.		002
Figure 1 – Ex	ample of a hierarchical DER system five-level architecture	19
•	ER primary stakeholders	
_	affic light concept	
_	siness policies, business objectives, business processes, and system	
		22
Figure 5 – Ro	ole highlights of the smart home domain	44
Figure 6 – Ge	eneral architecture for the smart home	54
	eneral architecture for the smart building	
•	S domains, services and roles	
-	Reference architecture diagram for smart metering communications	
_	EU M/490 – Flexibility Functional Architecture (CEN-CENELEC-ETSI)	
· ·	France – COSEI architectures	
•	Correspondence table between hardware components and functional	
components (system roles)	96
Figure B.1 –	Level 1 DER systems with autonomous functions at facility and DSO sites	101
Table 1 – Co	ntent of IEC SRD 62913-2-3:2019	9
Table 3 – Ma	trix of stakeholders versus their primary business purposes	22
Table 4 – Typ	es of DER services	24
Table 5 – Bus	siness roles	30
Table 6 – Bus	siness Use Cases	31
Table 7 – Ide	ntified system Use Cases of the domain	33
Table 8 – Sys	stem roles of the domain	38
Table 9 – Bus	siness roles of the domain	43
Table 10 – Id	entified smart home business Use Cases of the domain	45

Table 11 – Identified smart building business Use Cases of the domain	46
Table 12 – Identified system Use Cases of the domain	48
Table 13 – System roles of the domain	53
Table 14 – Business requirements	55
Table 15 – Identified EES services	74
Table 16 – Business roles of the domain	78
Table 17 – Identified business Use Cases of the domain	79
Table 18 – Identified system Use Cases of the domain	81
Table 19 – Requirements extracted from EES Use Cases	82
Table A.1 – Existing User Stories	84
Table A.2 – Existing Use Cases	85
Table A.3 – IEC documents on smart home/commercial/industrial/ DR-customer energy management	87
Table A.4 – Existing User Stories	88
Table A.5 – Existing Use Cases	89
Table A.6 – Links between TC 57/WG 21 User Stories and SyC SE Use Cases	90
Table A.7 – Existing User Stories	93
Table A.8 – International Standards on energy storage	97
Table A.9 – Regional and/or organizational standards on energy storage	98
Table A.10 – Existing Use Cases on energy storage	99
Table A.11 – Existing Use Cases on energy storage	100
Table B.1 – DER Use Cases	102
Table B.2 – Adapt the smart home behaviour to the resident/client's preferences	109
Table B.3 – Enable the interoperability between the smart home and the smart grid	118
Table B.4 – Provide enriched smart home data to relevant parties in order to make the resident/client more active	126
Table B.5 – Manage the flexibility on electricity demand and generation within a smart home from market signals	134
Table B.6 – Adapt the smart building behaviour to the energy manager/client's preferences	142
Table B.7 – Provide enriched smart building data to relevant parties in order to make the energy manager/client more active	151
Table B.8 – Manage the flexibility on electricity demand and generation within a smart building from market signals	160
Table B.9 – Manage the flexibility in electricity demand and generation within a smart home from emergency signals	168
Table B.10 – Manage the flexibility of the smart home on electricity demand and generation from price incentives	175
Table B.11 – Manage the flexibility of the smart home on electricity demand and generation from DR requests	205
Table B.12 – Manage opt-outs of the smart home to automatic responses related to price incentives or DR requests	233
Table B.13 – Customize automatic responses of the smart home (price incentives, DR requests, or emergency signals)	247
Table B.14 – Provide a third party with enriched smart home electricity data	261
Table B.15 – Provide alarms related to the smart home electricity behaviour to the client or resident	278

Table B.16 – Manage the flexibility in electricity demand and generation within a smart home from emergency signals	287
Table B.17 – Manage the flexibility of the smart building on electricity demand and generation from price incentives	296
Table B.18 – Manage the flexibility of the smart building on electricity demand and generation from DR requests	306
Table B.19 – Manage opt-outs of the smart building to automatic responses related to price incentives or DR requests	316
Table B.20 – Customize automatic responses of the smart building (price incentives, DR requests, or emergency signals)	329
Table B.21 – Provide a third party with enriched smart building electricity data	344
Table B.22 – Provide alarms related to the smart building electricity behaviour to the client or energy manager	360
Table B.23 – Optimize the smart building behaviour regarding internal and external information received	369
Table B.24 – Contribute to the efficient integration of intermittent renewable energies in the electric power system	377
Table B.25 – Help the grid user or the grid operator improve the quality of supply	385

INTERNATIONAL ELECTROTECHNICAL COMMISSION

GENERIC SMART GRID REQUIREMENTS -

Part 2-3: Resources connected to the grid domains

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC SRD 62913-2-3, which is a Systems Reference Deliverable, has been prepared by IEC systems committee Smart Energy.

The text of this Systems Reference Deliverable is based on the following documents:

Draft SRD	Report on voting	
SyCSmartEnergy/89/DTS	SyCSmartEnergy/98/RVDTS	

Full information on the voting for the approval of this Systems Reference Deliverable can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC SRD 62913 series, published under the general title *Generic smart grid requirements*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- · reconfirmed,
- · withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

The IEC SRD 62913 series has been broken down into domains so as to provide a neutral term for document management purposes. Under the general title *Generic smart grid requirements*, the IEC SRD 62913 series consists of the following parts:

- Part 1: Specific application of the Use Case methodology for defining generic smart grid requirements according to the IEC systems approach;
- Part 2 is composed of 5 subparts which refer to the clusters that group several domains:
 - Part 2-1: Grid related domains these include transmission grid management, distribution grid management, microgrids and smart substation automation;
 - Part 2-2: Market related domain;
 - Part 2-3: Resources connected to the grid domains these include bulk generation, distributed energy resources, smart home/commercial/industrial/DR-customer energy management, and energy storage;
 - Part 2-4: Electric transportation related domain;

IEC SRD 62913 refers to 'clusters' of domains for its different parts so as to provide a neutral term for document management purposes simply because it is necessary to split in several documents the broad scope of smart energy.

The purpose of this document is to define the generic smart grid requirements of resources connected to the grid domains, i.e. distributed energy resources, smart home/commercial/industrial/DR-customer energy management, energy storage, and bulk generation domains, based on the methods and tools developed in IEC SRD 62913-1.

The document for each domain is composed as follows.

- Purpose and scope.
- The business analysis: to address domain's strategic goals and principles regarding its smart grid environment. It also lists business Use Cases and system Use Cases identified, their associated business roles and system roles (actors) and the simplified role model highlighting main interactions between actors.
- Generic smart grid requirements: extracted from Use Cases described in Annex B.
- Annex A lists links between domains, technical committees and gathered materials (existing standardization documents, user stories, Use Cases and functional architectures).
- Annex B includes a complete description of Use Cases per domain based on IEC 62559-2.
- · Bibliography.

This document is based on the inputs from domain experts as well as existing materials in a smart grid environment.

GENERIC SMART GRID REQUIREMENTS -

Part 2-3: Resources connected to the grid domains

1 Scope

This part of IEC SRD 62913 initiates and illustrates the IEC's systems approach based on Use Cases and involving the identification of generic smart grid requirements for further standardization work for resources connected to the electric power systems – i.e. distributed energy resources, smart home/commercial/industrial/DR-customer energy management, energy storage, and bulk generation domains – based on the methods and tools developed in IEC SRD 62913-1.

This document captures possible "common and repeated usage" of a smart grid system, under the format of "Uses Cases" with a view to feeding further standardization activities. Use Cases can be described in different ways and can represent competing alternatives. From there, this document derives the common requirements to be considered by these further standardization activities in term of interfaces between actors interacting with the given system.

To this end, Use Case implementations are given for information purposes only. The interface requirements to be considered for later standardization activities are summarized (typically information pieces, communication services and specific non-functional requirements: performance level, security specification, etc.).

This analysis is based on the business input from domain experts as well as existing material on grid management in a smart grid environment when relevant. Table 1 highlights the domains and business Use Cases described in this document.

Electric vehicles are on one hand considered as a DER and normally should fit in IEC SRD 62913-2-3; but on the other hand, and for historical reasons, they are separated into two documents and covered in the IEC SRD 62913-2-4 electric transportation domain.

The document will be updated as new editions are published. Table 1 highlights the business areas covered in this document.

Domain Content Scope described Distributed energy resources Identified with 41 business Use Cases Operation and monitoring of a and 36 system Use Cases Described with 8 business Use Cases Smart home, smart building, Smart home/commercial/industrial/ DR-customer energy management and 14 system Use Cases multi-building complexes Energy storage Described with 2 business Use Cases EES services for grid users and system operators Bulk generation n/a n/a

Table 1 - Content of IEC SRD 62913-2-3:2019

2 Normative references

There are no normative references in this document.